
IJSRSET184448 | Received : 10 Jan 2018 | Accepted : 28 Jan 2018 | January-February-2018 [(4) 6 : 179-182]

© 2018 IJSRSET | Volume 4 | Issue 6 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

Themed Section : Engineering and Technology

179

Activity and Behavior Analytics for Big Data using Parallel and

Distributed Hadoop Ecosystem
Dr.Kalli Srinivasa Nageswara Prasad1, D.Srikar2

1Professor, CSE Department, GVVR Institute of Technology, Bhimavaram, Andhra Pradesh, India
2M.Tech., Assistant professor, CSE Department, GVVR Institute of Technology, Bhimavaram, Andhra Pradesh,

India

ABSTRACT

Time and technology has its own role model with respect to the innovation. Technology and its model view to

made things simpler for the end user; where the client need the pattern of the activity related to its domain.

Information of extreme size diversity and complexity – is everywhere. This disruptive phenomenon is destined

to help organizations drive innovation by gaining new and faster insight into their customers. Hence, in this

paper we try to put the glimpse of the big data search mechanism in order to use the stochastic automata to see

the graph or in other from which may be relevant to the client. In this aspect we have used the parallel

computing the logs which already mined and transaction data in various domains in order to give a statistical

data to the end user. It can be used in both the way of prevention is better than care in order to make the things

smarter and better way. In this paper we have considered both the automata theory to implement the stochastic

automata using Hadoop giving raise the concept of efficiency, robustness and accuracy.

Keywords: Activity detection, Data Lake, temporal stochastic automata, Hadoop, Distributed computing,

Hadoop, Distributed file system

I. INTRODUCTION

Hadoop promises shorter execution times or the

ability to process greater quantities of data

compared to sequential computation. However, in

practice it is hard to realize a parallel

implementation that comes close to achieving its

theoretical potential. This is because efficient

cooperation between processors is difficult to

implement. Parallelism introduces a new set of

concerns for the programmer: the scheduling of

computations; placement of data; synchronization;

and communication between processors. This

adds greatly to the complexity to the

programming task. An implementation must

manage all these concerns in addition to

computing a result. A skillful programmer can

produce efficient implementations in such

languages. However they are hard to use

effectively; furthermore the code produced is

often unclear, brittle and machine-specific.

Fig.1.1. Illustration of the Parallel Computing

 The weakness of these two approaches is that

they present a single fixed level of abstraction.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 180

Implementing parallel algorithms is more

complicated than implementing their sequential

counterparts, while at the same time the

efficiency of the implementation is very

important. This suggests a programming model

that combines the benefits of both approaches:

one that abstracts away from the complexity

while still permitting fine control when necessary.

II. RELATED WORK

When performance of the support software is

suboptimal the programmer will have difficulty in

correcting the problem. Although a programmer

may have the skill to produce a higher quality

implementation, the abstractions of the parallel

programming model may prevent them from

doing so. It is sometimes possible to subvert

abstractions when needed. However such work-

around – dirty hacks result in the programmer

fighting against the very feature that was

intended to make the programming task simpler.

Such work-around also diminishes the other

benefits of programming with abstractions – such

as transparency, safety, and portability.

Fig.2.1. Model of the Sketch for the Data Process

The success of a parallel implementation can be

assessed by a single measure: compare the runtime

to that of an optimized sequential implementation.

Because parallel processing is solely motivated by

performance, it is often unacceptable to delegate

implementation decisions to supporting software

that may produce sub-optimal results. Instead the

programmer may favor a programming model that

provides the low-level control necessary to

produce the best result. This is even though a

programming model with few abstractions may

make the programming task more difficult, the

code harder to reason about and verify, and the

resulting implementation harder to debug and

maintain

III. PROPOSED METHODOLOGY

Parallel programming languages and

methodologies typically attempt to assist the

programmer in one of two ways. The first

approach is to provide layers of abstraction that

hide the low-level details of the parallel machine

from the user. This simplifies the programming

task but reduces control over the finer details of

the parallel implementation. Other languages

provide as little abstraction as possible and require

the parallelization concerns to be managed

explicitly. Parallel machine architectures divide

into two broad classes – shared memory systems

and distributed memory systems. Shared memory

machines are characterized by a set of processors

that all have direct access to a common memory

store, through which they may communicate.

Distributed memory machines are comprised of a

set of nodes interconnected by a network. Each

node is a processor with its own local memory.

Data is exchanged between nodes by exchanging

messages across the network. Writing programs

for distributed memory machines is considerably

more difficult than implementing a similar shared

memory program. Communication is via message

passing, which introduces concurrency and

possibly non-determinacy: in particular deadlock

and race conditions are all possible. No

determinacy greatly confuses reasoning about

program behavior. The characteristics of the

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 181

interconnection network – its latency and

bandwidth – must also be considered. Failure to

do so may cause processors that are waiting for a

message to block excessively or the network to

become saturated. The methodology is composed

of a series of n stages, each of which has an

associated language L1; : : : ; Ln. Language L1

allows the expression of computations: all

parallelization details are left unspecified. Each of

the following languages in the series Li ; i = 2; : : : ;

n extends the previous language Li 1 with

constructs that make explicit the implementation

decisions of an additional parallelization concern.

Fig.3.1. Architecture Design of stochastic automata of parallel computing

 Therefore each language has a lower level of

abstraction than its predecessor in the series. The

process starts by expressing the computational portion

of the algorithm as a program in language L1. Parallel

implementation details are then incrementally

introduced by rewriting this program in every

language of the series in turn. Each transformation

between stages only requires the programmer to make

decisions about a single parallelization concern: the

decision is supported by a language that presents an

appropriate level of abstraction for that concern. The

series of stages provides structure to the derivation.

The introduction of parallel implementation details is

ordered so that the higher-level, more fundamental

decisions are taken before lesser concerns are tackled.

By the time the program has been rewritten in

language Ln all the parallelization details have been

specified. A conventional implementation can then be

produced with little further intervention from the

programmer. We have designed and implemented a

prototype of an incremental programming system.

IV. EVALUATION AND ANALYSIS

In all but the most embarrassingly Hadoops, some

data will be computed on one processor and required

by another. Communicating data across a distributed

memory machine is expensive – the network has

significant latency and limited bandwidth. Therefore

parallel algorithms are designed to minimize the

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 182

number of data redistributions required. The aim is to

decompose the problem so that as much as possible of

the data required by a processor is generated locally

or on nearby processors. Another technique is to

bundle together in the same communication different

data that is to be redistributed in the same way. This

may require adjusting the scheduling so that these

results become available at the same time.

V. CONCLUSION AND FUTURE WORK

Much research into language design and

programming methodologies has been concerned

with introducing models of computation that abstract

away from the low-level machine details. Whether it

is an incremental change, such as the introduction of

subroutines or the heap abstraction provided by C; or

an innovation such as the execution model of Prolog;

the aim is the same to simplify the programming task

by hiding some of the complexity of the underlying

machine. This is achieved by delegating the

management of some of the implementation concerns

to supporting software in the compiler or runtime

system. As the programmer is released from the

requirement to manage these concerns they are more

able to concentrate on higher-level problem solving

VI. REFERENCES

1. G Palshikar and M. Apte, “Collusion set detection

using graph clustering,” Data Knowl. Eng., vol. 16,

no. 1, pp. 135–164, 2008.

2. M Albanese, A. Pugliese, and V. S. Subrahmanian,

“Fast activity detection: Indexing for temporal

stochastic automaton-based activity models,” IEEE

Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 360–373,

Feb. 2013.

3. M Albanese, V. Moscato, A. Picariello, V. S.

Subrahmanian, and O. Udrea, “Detecting

stochastically scheduled activities in video,” in Proc.

IJCAI, M. M. Veloso, Ed. San Francisco, CA, USA,

2007,pp. 1802–1807.

4. S Lühr, H. H. Bui, S. Venkatesh, and G. A. W. West,

“Recognition of human activity through hierarchical

stochastic learning,” in Proc. PerCom., Fort Worth,

TX, USA, Mar. 2003, pp. 416–422.

5. T Duong, H. Bui, D. Phung, and S. Venkatesh,

“Activity recognition and abnormality detection

with the switching hidden semi-Markov model,” in

Proc. IEEE CVPR, Washington, DC, USA, 2005.

6. T V. Duong, D. Q. Phung, H. H. Bui, and S.

Venkatesh, “Efficient duration and hierarchical

modeling for human activity recognition,” Artif.

Intell., vol. 173, no. 7–8, pp. 830–856, May 2009.

7. R Hamid, Y. Huang, and I. Essa, “ARGMode activity

recognition using graphical models,” in Proc. IEEE

CVPR, Madison, WI, USA, 2003.

8. M Albanese, S. Jajodia, A. Pugliese, and V. S.

Subrahmanian, “Scalable analysis of attack

scenarios,” in Proc. ESORICS, Leuven, Belgium,

2011, pp. 416–433.

9. M L. Fredman and R. E. Tarjan, “Fibonacci heaps and

their uses in improved network optimization

algorithms,” in Proc. FOCS, 1984, pp. 338–346.

10. A. Guttman, “R-trees: A dynamic index structure for

spatial searching,” in Proc. SIGMOD Conf., B.

Yormark, Ed. New York, NY, USA, 1984, pp. 47–57.

11. Y. Manolopoulos, A. Nanopoulos, A. N.

Papadopoulos, and Y. Theodoridis, “R-trees: Theory

and applications,” in Advanced Information and

Knowledge Processing. Secaucus, NJ, USA: Springer-

Verlag, 2005.

12. N. Roussopoulos and D. Leifker, “Direct spatial

search on pictorial databases using packed R-trees,”

in Proc. SIGMOD Conf., S. B. Navathe, Ed., New

York, NY, USA, 1985, pp. 17–31.

13. D. R. Karger and C. Stein, “A new approach to the

minimum cut problem,” J. ACM, vol. 43, no. 4, pp.

601–640, 1996.

14. F. Mörchen, “Unsupervised pattern mining from

symbolic temporal data,” SIGKDD Explor. Newslett.,

vol. 9, no. 1, pp. 41–55, Jun. 2007.

15. K. Seymore, A. McCallum, and R. Rosenfeld,

“Learning hidden Markov model structure for

information extraction,” in Proc. AAAI Workshop

Machine Learning for Information Extraction, 1999.

16. M. Albanese et al., “A constrained probabilistic petri

net framework for human activity detection in

video,” IEEE Trans. Multimedia, vol. 10, no. 8, pp.

1429–1443, Dec. 2008.

17. V. Vu, F. Brémond, and M. Thonnat, “Automatic

video interpretation: A novel algorithm for temporal

scenario recognition,” in Proc. IJCAI, San Francisco,

CA, USA, Aug. 2003, pp. 1295–1302.

18. L. Golab and M. T. Özsu, “Issues in data stream

management,” SIGMOD Rec., vol. 32, pp. 5–14, Jun.

2003 [Online]. Available:

http://doi.acm.org/10.1145/776985.776986

