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ABSTRACT 

 

Time and technology has its own role model with respect to the innovation. Technology and its model view to 

made things simpler for the end user; where the client need the pattern of the activity related to its domain. 

Information of extreme size diversity and complexity – is everywhere. This disruptive phenomenon is destined 

to help organizations drive innovation by gaining new and faster insight into their customers.  Hence, in this 

paper we try to put the glimpse of the big data search mechanism in order to use the stochastic automata to see 

the graph or in other from which may be relevant to the client. In this aspect we have used the parallel 

computing the logs which already mined and transaction data in various domains in order to give a statistical 

data to the end user. It can be used in both the way of prevention is better than care in order to make the things 

smarter and better way. In this paper we have considered both the automata theory to implement the stochastic 

automata using Hadoop giving raise the concept of efficiency, robustness and accuracy. 

Keywords: Activity detection, Data Lake, temporal stochastic automata, Hadoop, Distributed computing, 

Hadoop, Distributed file system  

 

I. INTRODUCTION 

 

Hadoop promises shorter execution times or the 

ability to process greater quantities of data 

compared to sequential computation. However, in 

practice it is hard to realize a parallel 

implementation that comes close to achieving its 

theoretical potential. This is because efficient 

cooperation between processors is difficult to 

implement. Parallelism introduces a new set of 

concerns for the programmer: the scheduling of 

computations; placement of data; synchronization; 

and communication between processors. This 

adds greatly to the complexity to the 

programming task. An implementation must 

manage all these concerns in addition to 

computing a result. A skillful programmer can 

produce efficient implementations in such 

languages. However they are hard to use 

effectively; furthermore the code produced is 

often unclear, brittle and machine-specific. 

 

 
Fig.1.1. Illustration of the Parallel Computing 

 The weakness of these two approaches is that 

they present a single fixed level of abstraction. 
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Implementing parallel algorithms is more 

complicated than implementing their sequential 

counterparts, while at the same time the 

efficiency of the implementation is very 

important. This suggests a programming model 

that combines the benefits of both approaches: 

one that abstracts away from the complexity 

while still permitting fine control when necessary. 

 

II. RELATED WORK 

 

When performance of the support software is 

suboptimal the programmer will have difficulty in 

correcting the problem. Although a programmer 

may have the skill to produce a higher quality 

implementation, the abstractions of the parallel 

programming model may prevent them from 

doing so. It is sometimes possible to subvert 

abstractions when needed. However such work-

around – dirty hacks result in the programmer 

fighting against the very feature that was 

intended to make the programming task simpler. 

Such work-around also diminishes the other 

benefits of programming with abstractions – such 

as transparency, safety, and portability.  

 
Fig.2.1. Model of the Sketch for the Data Process 

The success of a parallel implementation can be 

assessed by a single measure: compare the runtime 

to that of an optimized sequential implementation. 

Because parallel processing is solely motivated by 

performance, it is often unacceptable to delegate 

implementation decisions to supporting software 

that may produce sub-optimal results. Instead the 

programmer may favor a programming model that 

provides the low-level control necessary to 

produce the best result. This is even though a 

programming model with few abstractions may 

make the programming task more difficult, the 

code harder to reason about and verify, and the 

resulting implementation harder to debug and 

maintain 

 

III. PROPOSED METHODOLOGY 

 

Parallel programming languages and 

methodologies typically attempt to assist the 

programmer in one of two ways. The first 

approach is to provide layers of abstraction that 

hide the low-level details of the parallel machine 

from the user. This simplifies the programming 

task but reduces control over the finer details of 

the parallel implementation. Other languages 

provide as little abstraction as possible and require 

the parallelization concerns to be managed 

explicitly. Parallel machine architectures divide 

into two broad classes – shared memory systems 

and distributed memory systems. Shared memory 

machines are characterized by a set of processors 

that all have direct access to a common memory 

store, through which they may communicate. 

Distributed memory machines are comprised of a 

set of nodes interconnected by a network. Each 

node is a processor with its own local memory. 

Data is exchanged between nodes by exchanging 

messages across the network. Writing programs 

for distributed memory machines is considerably 

more difficult than implementing a similar shared 

memory program. Communication is via message 

passing, which introduces concurrency and 

possibly non-determinacy: in particular deadlock 

and race conditions are all possible. No 

determinacy greatly confuses reasoning about 

program behavior. The characteristics of the 
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interconnection network – its latency and 

bandwidth – must also be considered. Failure to 

do so may cause processors that are waiting for a 

message to block excessively or the network to 

become saturated. The methodology is composed 

of a series of n stages, each of which has an 

associated language L1; : : : ; Ln. Language L1 

allows the expression of computations: all 

parallelization details are left unspecified. Each of 

the following languages in the series Li ; i = 2; : : : ; 

n extends the previous language Li 1 with 

constructs that make explicit the implementation 

decisions of an additional parallelization concern. 

 
Fig.3.1. Architecture Design of stochastic automata of parallel computing 

 

 Therefore each language has a lower level of 

abstraction than its predecessor in the series. The 

process starts by expressing the computational portion 

of the algorithm as a program in language L1. Parallel 

implementation details are then incrementally 

introduced by rewriting this program in every 

language of the series in turn. Each transformation 

between stages only requires the programmer to make 

decisions about a single parallelization concern: the 

decision is supported by a language that presents an 

appropriate level of abstraction for that concern. The 

series of stages provides structure to the derivation. 

The introduction of parallel implementation details is 

ordered so that the higher-level, more fundamental 

decisions are taken before lesser concerns are tackled. 

By the time the program has been rewritten in 

language Ln all the parallelization details have been 

specified. A conventional implementation can then be 

produced with little further intervention from the 

programmer. We have designed and implemented a 

prototype of an incremental programming system. 

 

IV. EVALUATION AND ANALYSIS 

 

In all but the most embarrassingly Hadoops, some 

data will be computed on one processor and required 

by another. Communicating data across a distributed 

memory machine is expensive – the network has 

significant latency and limited bandwidth. Therefore 

parallel algorithms are designed to minimize the 
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number of data redistributions required. The aim is to 

decompose the problem so that as much as possible of 

the data required by a processor is generated locally 

or on nearby processors. Another technique is to 

bundle together in the same communication different 

data that is to be redistributed in the same way. This 

may require adjusting the scheduling so that these 

results become available at the same time. 

 

V. CONCLUSION AND FUTURE WORK 

 

Much research into language design and 

programming methodologies has been concerned 

with introducing models of computation that abstract 

away from the low-level machine details. Whether it 

is an incremental change, such as the introduction of 

subroutines or the heap abstraction provided by C; or 

an innovation such as the execution model of Prolog; 

the aim is the same to simplify the programming task 

by hiding some of the complexity of the underlying 

machine. This is achieved by delegating the 

management of some of the implementation concerns 

to supporting software in the compiler or runtime 

system. As the programmer is released from the 

requirement to manage these concerns they are more 

able to concentrate on higher-level problem solving 

 

VI. REFERENCES 

1. G Palshikar and M. Apte, “Collusion set detection 

using graph clustering,” Data Knowl. Eng., vol. 16, 

no. 1, pp. 135–164, 2008. 

2. M Albanese, A. Pugliese, and V. S. Subrahmanian, 

“Fast activity detection: Indexing for temporal 

stochastic automaton-based activity models,” IEEE 

Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 360–373, 

Feb. 2013. 

3. M Albanese, V. Moscato, A. Picariello, V. S. 

Subrahmanian, and O. Udrea, “Detecting 

stochastically scheduled activities in video,” in Proc. 

IJCAI, M. M. Veloso, Ed. San Francisco, CA, USA, 

2007,pp. 1802–1807. 

4. S Lühr, H. H. Bui, S. Venkatesh, and G. A. W. West, 

“Recognition of human activity through hierarchical 

stochastic learning,” in Proc. PerCom., Fort Worth, 

TX, USA, Mar. 2003, pp. 416–422. 

5. T Duong, H. Bui, D. Phung, and S. Venkatesh, 

“Activity recognition and abnormality detection 

with the switching hidden semi-Markov model,” in 

Proc. IEEE CVPR, Washington, DC, USA, 2005. 

6. T V. Duong, D. Q. Phung, H. H. Bui, and S. 

Venkatesh, “Efficient duration and hierarchical 

modeling for human activity recognition,” Artif. 

Intell., vol. 173, no. 7–8, pp. 830–856, May 2009. 

7. R Hamid, Y. Huang, and I. Essa, “ARGMode activity 

recognition using graphical models,” in Proc. IEEE 

CVPR, Madison, WI, USA, 2003. 

8. M Albanese, S. Jajodia, A. Pugliese, and V. S. 

Subrahmanian, “Scalable analysis of attack 

scenarios,” in Proc. ESORICS, Leuven, Belgium, 

2011, pp. 416–433. 

9. M L. Fredman and R. E. Tarjan, “Fibonacci heaps and 

their uses in improved network optimization 

algorithms,” in Proc. FOCS, 1984, pp. 338–346. 

10. A. Guttman, “R-trees: A dynamic index structure for 

spatial searching,” in Proc. SIGMOD Conf., B. 

Yormark, Ed. New York, NY, USA, 1984, pp. 47–57. 

11. Y. Manolopoulos, A. Nanopoulos, A. N. 

Papadopoulos, and Y. Theodoridis, “R-trees: Theory 

and applications,” in Advanced Information and 

Knowledge Processing. Secaucus, NJ, USA: Springer-

Verlag, 2005. 

12. N. Roussopoulos and D. Leifker, “Direct spatial 

search on pictorial databases using packed R-trees,” 

in Proc. SIGMOD Conf., S. B. Navathe, Ed., New 

York, NY, USA, 1985, pp. 17–31. 

13. D. R. Karger and C. Stein, “A new approach to the 

minimum cut problem,” J. ACM, vol. 43, no. 4, pp. 

601–640, 1996. 

14. F. Mörchen, “Unsupervised pattern mining from 

symbolic temporal data,” SIGKDD Explor. Newslett., 

vol. 9, no. 1, pp. 41–55, Jun. 2007. 

15. K. Seymore, A. McCallum, and R. Rosenfeld, 

“Learning hidden Markov model structure for 

information extraction,” in Proc. AAAI Workshop 

Machine Learning for Information Extraction, 1999. 

16. M. Albanese et al., “A constrained probabilistic petri 

net framework for human activity detection in 

video,” IEEE Trans. Multimedia, vol. 10, no. 8, pp. 

1429–1443, Dec. 2008. 

17. V. Vu, F. Brémond, and M. Thonnat, “Automatic 

video interpretation: A novel algorithm for temporal 

scenario recognition,” in Proc. IJCAI, San Francisco, 

CA, USA, Aug. 2003, pp. 1295–1302. 

18. L. Golab and M. T. Özsu, “Issues in data stream 

management,” SIGMOD Rec., vol. 32, pp. 5–14, Jun. 

2003 [Online]. Available: 

http://doi.acm.org/10.1145/776985.776986 


